Diversity and function of mutations in p450 oxidoreductase in patients with Antley-Bixler syndrome and disordered steroidogenesis.
نویسندگان
چکیده
P450 oxidoreductase (POR) is the obligatory flavoprotein intermediate that transfers electrons from reduced nicotinamide adenine dinucleotide phosphate (NADPH) to all microsomal cytochrome P450 enzymes. Although mouse Por gene ablation causes embryonic lethality, POR missense mutations cause disordered steroidogenesis, ambiguous genitalia, and Antley-Bixler syndrome (ABS), which has also been attributed to fibroblast growth factor receptor 2 (FGFR2) mutations. We sequenced the POR gene and FGFR2 exons 8 and 10 in 32 individuals with ABS and/or hormonal findings that suggested POR deficiency. POR and FGFR2 mutations segregated completely. Fifteen patients carried POR mutations on both alleles, 4 carried mutations on only one allele, 10 carried FGFR2 or FGFR3 mutations, and 3 patients carried no mutations. The 34 affected POR alleles included 10 with A287P (all from whites) and 7 with R457H (four Japanese, one African, two whites); 17 of the 34 alleles carried 16 "private" mutations, including 9 missense and 7 frameshift mutations. These 11 missense mutations, plus 10 others found in databases or reported elsewhere, were recreated by site-directed mutagenesis and were assessed by four assays: reduction of cytochrome c, oxidation of NADPH, support of 17alpha-hydroxylase activity, and support of 17,20 lyase using human P450c17. Assays that were based on cytochrome c, which is not a physiologic substrate for POR, correlated poorly with clinical phenotype, but assays that were based on POR's support of catalysis by P450c17--the enzyme most closely associated with the hormonal phenotype--provided an excellent genotype/phenotype correlation. Our large survey of patients with ABS shows that individuals with an ABS-like phenotype and normal steroidogenesis have FGFR mutations, whereas those with ambiguous genitalia and disordered steroidogenesis should be recognized as having a distinct new disease: POR deficiency.
منابع مشابه
[Antley-Bixler syndrome or POR deficiency?].
Antley-Bixler syndrome (ABS) is a rare congenital disorder characterized by numerous craniofacial, skeletal and, in some cases, urogenital abnormalities resulting from disordered steroidogenesis. Known genetic causes in sporadic cases of ABS include dominant mutations in the fibroblast growth factor 2 receptor gene (FGFR2). Recent research shows surprisingly that symptoms of Antley-Bixler syndr...
متن کاملAmbiguous genitalia, impaired steroidogenesis, and Antley-Bixler syndrome in a patient with P450 oxidoreductase deficiency.
Cytochrome P450 oxidoreductase deficiency is a recently established autosomal recessive disease characterised by ambiguous genitalia, impaired steroidogenesis, and skeletal malformations, referred to as Antley-Bixler syndrome. Clinical manifestations in affected patients are highly variable. We report on a girl with P450 oxidoreductase deficiency who presented with virilisation at birth. There ...
متن کاملGenetic and clinical features of p450 oxidoreductase deficiency.
P450 oxidoreductase (POR) deficiency is an autosomal recessive disorder of steroidogenesis with multiple clinical manifestations. POR is the electron donor for all microsomal P450 enzymes, including the three steroidogenic enzymes P450c17 (17alpha-hydroxylase/17,20-lyase), P450c21 (21-hydroxylase), and P450aro (aromatase). Since the first description of POR mutations in 2004, about 50 patients ...
متن کاملDiminished FAD binding in the Y459H and V492E Antley-Bixler syndrome mutants of human cytochrome P450 reductase.
Numerous mutations/polymorphisms of the POR gene, encoding NADPH:cytochrome P450 oxidoreductase (CYPOR), have been described in patients with Antley-Bixler syndrome (ABS), presenting with craniofacial dysmorphogenesis, and/or disordered steroidogenesis, exhibiting ambiguous genitalia. CYPOR is the obligate electron donor to 51 microsomal cytochromes P450 that catalyze critical steroidogenic and...
متن کاملConditional Deletion of Cytochrome P450 Reductase in Osteoprogenitor Cells Affects Long Bone and Skull Development in Mice Recapitulating Antley-Bixler Syndrome: Role of a Redox Enzyme in Development
NADPH-cytochrome P450 oxidoreductase (POR) is the primary electron donor for cytochromes P450, dehydrocholesterol reductase, heme oxygenase, and squalene monooxygenase. Human patients with specific mutations in POR exhibit severe developmental malformations including disordered steroidogenesis, sexual ambiguities and various bone defects, similar to those seen in patients with Antley-Bixler syn...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- American journal of human genetics
دوره 76 5 شماره
صفحات -
تاریخ انتشار 2005